Title: | Statistical Experiments on Batch Computing Clusters |
---|---|
Description: | Extends the BatchJobs package to run statistical experiments on batch computing clusters. For further details see the project web page. |
Authors: | Bernd Bischl <[email protected]>, Michel Lang <[email protected]>, Olaf Mersmann <[email protected]> |
Maintainer: | Michel Lang <[email protected]> |
License: | BSD_3_clause + file LICENSE |
Version: | 1.4.3 |
Built: | 2025-01-13 04:49:01 UTC |
Source: | https://github.com/tudo-r/batchexperiments |
Add an algorithm to registry and stores it on disk.
addAlgorithm(reg, id, fun, overwrite = FALSE)
addAlgorithm(reg, id, fun, overwrite = FALSE)
reg |
[ |
id |
[ |
fun |
[ To retrieve job informations from the |
overwrite |
[ |
[character(1)
]. Invisibly returns the id.
Other add:
addExperiments()
,
addProblem()
Add experiments for running algorithms on problems to the registry, so they can be executed later.
addExperiments( reg, prob.designs, algo.designs, repls = 1L, skip.defined = FALSE )
addExperiments( reg, prob.designs, algo.designs, repls = 1L, skip.defined = FALSE )
reg |
[ |
prob.designs |
[ |
algo.designs |
[ |
repls |
[ |
skip.defined |
[ |
Invisibly returns vector of ids of added experiments.
Other add:
addAlgorithm()
,
addProblem()
### EXAMPLE 1 ### reg = makeExperimentRegistry(id = "example1", file.dir = tempfile()) # Define a problem: # Subsampling from the iris dataset. data(iris) subsample = function(static, ratio) { n = nrow(static) train = sample(n, floor(n * ratio)) test = setdiff(seq(n), train) list(test = test, train = train) } addProblem(reg, id = "iris", static = iris, dynamic = subsample, seed = 123) # Define algorithm "tree": # Decision tree on the iris dataset, modeling Species. tree.wrapper = function(static, dynamic, ...) { library(rpart) mod = rpart(Species ~ ., data = static[dynamic$train, ], ...) pred = predict(mod, newdata = static[dynamic$test, ], type = "class") table(static$Species[dynamic$test], pred) } addAlgorithm(reg, id = "tree", fun = tree.wrapper) # Define algorithm "forest": # Random forest on the iris dataset, modeling Species. forest.wrapper = function(static, dynamic, ...) { library(randomForest) mod = randomForest(Species ~ ., data = static, subset = dynamic$train, ...) pred = predict(mod, newdata = static[dynamic$test, ]) table(static$Species[dynamic$test], pred) } addAlgorithm(reg, id = "forest", fun = forest.wrapper) # Define problem parameters: pars = list(ratio = c(0.67, 0.9)) iris.design = makeDesign("iris", exhaustive = pars) # Define decision tree parameters: pars = list(minsplit = c(10, 20), cp = c(0.01, 0.1)) tree.design = makeDesign("tree", exhaustive = pars) # Define random forest parameters: pars = list(ntree = c(100, 500)) forest.design = makeDesign("forest", exhaustive = pars) # Add experiments to the registry: # Use previously defined experimental designs. addExperiments(reg, prob.designs = iris.design, algo.designs = list(tree.design, forest.design), repls = 2) # usually you would set repls to 100 or more. # Optional: Short summary over problems and algorithms. summarizeExperiments(reg) # Optional: Test one decision tree job and one expensive (ntree = 1000) # random forest job. Use findExperiments to get the right job ids. do.tests = FALSE if (do.tests) { id1 = findExperiments(reg, algo.pattern = "tree")[1] id2 = findExperiments(reg, algo.pattern = "forest", algo.pars = (ntree == 1000))[1] testJob(reg, id1) testJob(reg, id2) } # Submit the jobs to the batch system submitJobs(reg) # Calculate the misclassification rate for all (already done) jobs. reduce = function(job, res) { n = sum(res) list(mcr = (n-sum(diag(res)))/n) } res = reduceResultsExperiments(reg, fun = reduce) print(res) # Aggregate results using 'ddply' from package 'plyr': # Calculate the mean over all replications of identical experiments # (same problem, same algorithm and same parameters) library(plyr) vars = setdiff(names(res), c("repl", "mcr")) aggr = ddply(res, vars, summarise, mean.mcr = mean(mcr)) print(aggr) ## Not run: ### EXAMPLE 2 ### # define two simple test functions testfun1 = function(x) sum(x^2) testfun2 = function(x) -exp(-sum(abs(x))) # Define ExperimentRegistry: reg = makeExperimentRegistry("example02", seed = 123, file.dir = tempfile()) # Add the testfunctions to the registry: addProblem(reg, "testfun1", static = testfun1) addProblem(reg, "testfun2", static = testfun2) # Use SimulatedAnnealing on the test functions: addAlgorithm(reg, "sann", fun = function(static, dynamic) { upp = rep(10, 2) low = -upp start = sample(c(-10, 10), 2) res = optim(start, fn = static, lower = low, upper = upp, method = "SANN") res = res[c("par", "value", "counts", "convergence")] res$start = start return(res) }) # add experiments and submit addExperiments(reg, repls = 10) submitJobs(reg) # Gather informations from the experiments, in this case function value # and whether the algorithm convergenced: reduceResultsExperiments(reg, fun = function(job, res) res[c("value", "convergence")]) ## End(Not run)
### EXAMPLE 1 ### reg = makeExperimentRegistry(id = "example1", file.dir = tempfile()) # Define a problem: # Subsampling from the iris dataset. data(iris) subsample = function(static, ratio) { n = nrow(static) train = sample(n, floor(n * ratio)) test = setdiff(seq(n), train) list(test = test, train = train) } addProblem(reg, id = "iris", static = iris, dynamic = subsample, seed = 123) # Define algorithm "tree": # Decision tree on the iris dataset, modeling Species. tree.wrapper = function(static, dynamic, ...) { library(rpart) mod = rpart(Species ~ ., data = static[dynamic$train, ], ...) pred = predict(mod, newdata = static[dynamic$test, ], type = "class") table(static$Species[dynamic$test], pred) } addAlgorithm(reg, id = "tree", fun = tree.wrapper) # Define algorithm "forest": # Random forest on the iris dataset, modeling Species. forest.wrapper = function(static, dynamic, ...) { library(randomForest) mod = randomForest(Species ~ ., data = static, subset = dynamic$train, ...) pred = predict(mod, newdata = static[dynamic$test, ]) table(static$Species[dynamic$test], pred) } addAlgorithm(reg, id = "forest", fun = forest.wrapper) # Define problem parameters: pars = list(ratio = c(0.67, 0.9)) iris.design = makeDesign("iris", exhaustive = pars) # Define decision tree parameters: pars = list(minsplit = c(10, 20), cp = c(0.01, 0.1)) tree.design = makeDesign("tree", exhaustive = pars) # Define random forest parameters: pars = list(ntree = c(100, 500)) forest.design = makeDesign("forest", exhaustive = pars) # Add experiments to the registry: # Use previously defined experimental designs. addExperiments(reg, prob.designs = iris.design, algo.designs = list(tree.design, forest.design), repls = 2) # usually you would set repls to 100 or more. # Optional: Short summary over problems and algorithms. summarizeExperiments(reg) # Optional: Test one decision tree job and one expensive (ntree = 1000) # random forest job. Use findExperiments to get the right job ids. do.tests = FALSE if (do.tests) { id1 = findExperiments(reg, algo.pattern = "tree")[1] id2 = findExperiments(reg, algo.pattern = "forest", algo.pars = (ntree == 1000))[1] testJob(reg, id1) testJob(reg, id2) } # Submit the jobs to the batch system submitJobs(reg) # Calculate the misclassification rate for all (already done) jobs. reduce = function(job, res) { n = sum(res) list(mcr = (n-sum(diag(res)))/n) } res = reduceResultsExperiments(reg, fun = reduce) print(res) # Aggregate results using 'ddply' from package 'plyr': # Calculate the mean over all replications of identical experiments # (same problem, same algorithm and same parameters) library(plyr) vars = setdiff(names(res), c("repl", "mcr")) aggr = ddply(res, vars, summarise, mean.mcr = mean(mcr)) print(aggr) ## Not run: ### EXAMPLE 2 ### # define two simple test functions testfun1 = function(x) sum(x^2) testfun2 = function(x) -exp(-sum(abs(x))) # Define ExperimentRegistry: reg = makeExperimentRegistry("example02", seed = 123, file.dir = tempfile()) # Add the testfunctions to the registry: addProblem(reg, "testfun1", static = testfun1) addProblem(reg, "testfun2", static = testfun2) # Use SimulatedAnnealing on the test functions: addAlgorithm(reg, "sann", fun = function(static, dynamic) { upp = rep(10, 2) low = -upp start = sample(c(-10, 10), 2) res = optim(start, fn = static, lower = low, upper = upp, method = "SANN") res = res[c("par", "value", "counts", "convergence")] res$start = start return(res) }) # add experiments and submit addExperiments(reg, repls = 10) submitJobs(reg) # Gather informations from the experiments, in this case function value # and whether the algorithm convergenced: reduceResultsExperiments(reg, fun = function(job, res) res[c("value", "convergence")]) ## End(Not run)
Add a algorithm to problem and stores it on disk.
addProblem( reg, id, static = NULL, dynamic = NULL, seed = NULL, overwrite = FALSE )
addProblem( reg, id, static = NULL, dynamic = NULL, seed = NULL, overwrite = FALSE )
reg |
Registry. |
id |
[ |
static |
[any] |
dynamic |
[ |
seed |
[ |
overwrite |
[ |
[character(1)
]. Invisibly returns the id.
Other add:
addAlgorithm()
,
addExperiments()
Extends the BatchJobs package to run statistical experiments on batch computing clusters.
You can access job properties using the job
object which is optionally passed
to dynamic problem functions and algorithms. The object is a named list with the following
elements:
id
[integer(1)
]:Job ID.
prob.id
[character(1)
]:Problem ID.
prob.pars
[list
]:Problem parameters as named list.
algo.id
[character(1)
]:algo.id
Algorithm ID.
algo.pars
[list
]:Algorithm parameters as named list.
repl
[integer(1)
]:Replication number of this experiment.
seed
[integer(1)
]:Seed set right before algorithm execution.
prob.seed
[integer(1)
]:Seed set right before generation of problem instance.
Find job ids by querying problem/algorithm ids, problem/algorithm parameters or replication number.
findExperiments( reg, ids, prob.pattern, prob.pars, algo.pattern, algo.pars, repls, match.substring = TRUE, regexp = FALSE )
findExperiments( reg, ids, prob.pattern, prob.pars, algo.pattern, algo.pars, repls, match.substring = TRUE, regexp = FALSE )
reg |
[ |
ids |
[ |
prob.pattern |
[ |
prob.pars |
[R expression] |
algo.pattern |
[ |
algo.pars |
[R expression] |
repls |
[ |
match.substring |
[ |
regexp |
[ |
[integer
]. Ids for experiments which match the query.
reg = makeExperimentRegistry(id = "example1", file.dir = tempfile()) p1 = addProblem(reg, "one", 1) p2 = addProblem(reg, "two", 2) a = addAlgorithm(reg, "A", fun = function(static, n) static + n) addExperiments(reg, algo.design = makeDesign(a, exhaustive = list(n = 1:4))) findExperiments(reg, prob.pattern = "one") findExperiments(reg, prob.pattern = "o") findExperiments(reg, algo.pars = (n > 2))
reg = makeExperimentRegistry(id = "example1", file.dir = tempfile()) p1 = addProblem(reg, "one", 1) p2 = addProblem(reg, "two", 2) a = addAlgorithm(reg, "A", fun = function(static, n) static + n) addExperiments(reg, algo.design = makeDesign(a, exhaustive = list(n = 1:4))) findExperiments(reg, prob.pattern = "one") findExperiments(reg, prob.pattern = "o") findExperiments(reg, algo.pars = (n > 2))
Calls the dynamic problem function on the static problem part and thereby creates the problem instance. The seeding mechanism is identical to execution on the slave.
generateProblemInstance(reg, id)
generateProblemInstance(reg, id)
reg |
[ |
id |
[ |
Dynamic part of problem.
The requested object is loaded from disk.
getAlgorithm(reg, id)
getAlgorithm(reg, id)
reg |
[ |
id |
[ |
[Algorithm
].
Other get:
getAlgorithmIds()
,
getExperimentParts()
,
getJobs.ExperimentRegistry()
,
getProblemIds()
,
getProblem()
Get algorithm ids for jobs.
getAlgorithmIds(reg, ids)
getAlgorithmIds(reg, ids)
reg |
[ |
ids |
[codeinteger] |
[character
].
Other get:
getAlgorithm()
,
getExperimentParts()
,
getJobs.ExperimentRegistry()
,
getProblemIds()
,
getProblem()
Get all parts which define an Experiment
.
getExperimentParts(reg, id)
getExperimentParts(reg, id)
reg |
[ |
id |
[ |
[named list]. Returns the Job, Problem, Instance and Algorithm.
Other get:
getAlgorithmIds()
,
getAlgorithm()
,
getJobs.ExperimentRegistry()
,
getProblemIds()
,
getProblem()
Creates a list of factor
to use in functions like tapply
, by
or aggregate
.
getIndex( reg, ids, by.prob = FALSE, by.algo = FALSE, by.repl = FALSE, by.prob.pars, by.algo.pars, enclos = parent.frame() )
getIndex( reg, ids, by.prob = FALSE, by.algo = FALSE, by.repl = FALSE, by.prob.pars, by.algo.pars, enclos = parent.frame() )
reg |
[ |
ids |
[ |
by.prob |
[ |
by.algo |
[ |
by.repl |
[ |
by.prob.pars |
[R expression] |
by.algo.pars |
[R expression] |
enclos |
[ |
[list
]. List of factors.
# create a registry and add problems and algorithms reg = makeExperimentRegistry("getIndex", file.dir = tempfile("")) addProblem(reg, "prob", static = 1) addAlgorithm(reg, "f0", function(static, dynamic) static) addAlgorithm(reg, "f1", function(static, dynamic, i, k) static * i^k) ad = list(makeDesign("f0"), makeDesign("f1", exhaustive = list(i = 1:5, k = 1:3))) addExperiments(reg, algo.designs = ad) submitJobs(reg) # get grouped job ids ids = getJobIds(reg) by(ids, getIndex(reg, by.prob = TRUE, by.algo = TRUE), identity) ids = findExperiments(reg, algo.pattern = "f1") by(ids, getIndex(reg, ids, by.algo.pars = (k == 1)), identity) # groupwise reduction ids = findExperiments(reg, algo.pattern = "f1") showStatus(reg, ids) f = function(aggr, job, res) aggr + res by(ids, getIndex(reg, ids, by.algo.pars = k), reduceResults, reg = reg, fun = f) by(ids, getIndex(reg, ids, by.algo.pars = i), reduceResults, reg = reg, fun = f)
# create a registry and add problems and algorithms reg = makeExperimentRegistry("getIndex", file.dir = tempfile("")) addProblem(reg, "prob", static = 1) addAlgorithm(reg, "f0", function(static, dynamic) static) addAlgorithm(reg, "f1", function(static, dynamic, i, k) static * i^k) ad = list(makeDesign("f0"), makeDesign("f1", exhaustive = list(i = 1:5, k = 1:3))) addExperiments(reg, algo.designs = ad) submitJobs(reg) # get grouped job ids ids = getJobIds(reg) by(ids, getIndex(reg, by.prob = TRUE, by.algo = TRUE), identity) ids = findExperiments(reg, algo.pattern = "f1") by(ids, getIndex(reg, ids, by.algo.pars = (k == 1)), identity) # groupwise reduction ids = findExperiments(reg, algo.pattern = "f1") showStatus(reg, ids) f = function(aggr, job, res) aggr + res by(ids, getIndex(reg, ids, by.algo.pars = k), reduceResults, reg = reg, fun = f) by(ids, getIndex(reg, ids, by.algo.pars = i), reduceResults, reg = reg, fun = f)
Constructs an Experiment
for each job id provided.
## S3 method for class 'ExperimentRegistry' getJobs(reg, ids, check.ids = TRUE)
## S3 method for class 'ExperimentRegistry' getJobs(reg, ids, check.ids = TRUE)
reg |
[ |
ids |
[ |
check.ids |
[ |
[list of Experiment
].
Other get:
getAlgorithmIds()
,
getAlgorithm()
,
getExperimentParts()
,
getProblemIds()
,
getProblem()
The requested object is loaded from disk.
getProblem(reg, id)
getProblem(reg, id)
reg |
[ |
id |
[ |
[Problem
].
Other get:
getAlgorithmIds()
,
getAlgorithm()
,
getExperimentParts()
,
getJobs.ExperimentRegistry()
,
getProblemIds()
Get problem ids for jobs.
getProblemIds(reg, ids)
getProblemIds(reg, ids)
reg |
[ |
ids |
[codeinteger] |
[character
].
Other get:
getAlgorithmIds()
,
getAlgorithm()
,
getExperimentParts()
,
getJobs.ExperimentRegistry()
,
getProblem()
Useful helper for e.g. package plyr and such.
getResultVars(data, type = "group")
getResultVars(data, type = "group")
data |
[ |
type |
[ |
[character
]. Names of of columns.
reg = makeExperimentRegistry("BatchExample", seed = 123, file.dir = tempfile()) addProblem(reg, "p1", static = 1) addProblem(reg, "p2", static = 2) addAlgorithm(reg, id = "a1", fun = function(static, dynamic, alpha) c(y = static*alpha)) addAlgorithm(reg, id = "a2", fun = function(static, dynamic, alpha, beta) c(y = static*alpha+beta)) ad1 = makeDesign("a1", exhaustive = list(alpha = 1:2)) ad2 = makeDesign("a2", exhaustive = list(alpha = 1:2, beta = 5:6)) addExperiments(reg, algo.designs = list(ad1, ad2), repls = 2) submitJobs(reg) data = reduceResultsExperiments(reg) library(plyr) ddply(data, getResultVars(data, "group"), summarise, mean_y = mean(y))
reg = makeExperimentRegistry("BatchExample", seed = 123, file.dir = tempfile()) addProblem(reg, "p1", static = 1) addProblem(reg, "p2", static = 2) addAlgorithm(reg, id = "a1", fun = function(static, dynamic, alpha) c(y = static*alpha)) addAlgorithm(reg, id = "a2", fun = function(static, dynamic, alpha, beta) c(y = static*alpha+beta)) ad1 = makeDesign("a1", exhaustive = list(alpha = 1:2)) ad2 = makeDesign("a2", exhaustive = list(alpha = 1:2, beta = 5:6)) addExperiments(reg, algo.designs = list(ad1, ad2), repls = 2) submitJobs(reg) data = reduceResultsExperiments(reg) library(plyr) ddply(data, getResultVars(data, "group"), summarise, mean_y = mean(y))
Create a parameter design for either a problem or an algorithm that you
can use in addExperiments
.
All parameters in design
and exhaustive
be “primitive”
in the sense that either is.atomic
is TRUE
or is.factor
is TRUE
.
Be aware of R's default behaviour of converting strings into factors if you use the design
parameter. See option stringsAsFactors
in data.frame
to turn this off.
makeDesign(id, design = data.frame(), exhaustive = list())
makeDesign(id, design = data.frame(), exhaustive = list())
id |
[ Id of algorithm or problem. |
design |
[ |
exhaustive |
[ |
[Design
].
## Not run: # simple design for algorithm "a1" with no parameters: design = makeDesign("a1") # design for problem "p1" using predefined parameter combinations design = makeDesign("p1", design = data.frame(alpha = 0:1, beta = c(0.1, 0.2))) # creating a list of designs for several algorithms at once, all using the same # exhaustive grid of parameters designs = lapply(c("a1", "a2", "a3"), makeDesign, exhaustive = list(alpha = 0:1, gamma = 1:10/10)) ## End(Not run)
## Not run: # simple design for algorithm "a1" with no parameters: design = makeDesign("a1") # design for problem "p1" using predefined parameter combinations design = makeDesign("p1", design = data.frame(alpha = 0:1, beta = c(0.1, 0.2))) # creating a list of designs for several algorithms at once, all using the same # exhaustive grid of parameters designs = lapply(c("a1", "a2", "a3"), makeDesign, exhaustive = list(alpha = 0:1, gamma = 1:10/10)) ## End(Not run)
Note that if you don't want links in your paths (file.dir
, work.dir
) to get resolved and have
complete control over the way the path is used internally, pass an absolute path which begins with “/”.
Every object is a list that contains the passed arguments of the constructor.
makeExperimentRegistry( id = "BatchExperimentRegistry", file.dir, sharding = TRUE, work.dir, multiple.result.files = FALSE, seed, packages = character(0L), src.dirs = character(0L), src.files = character(0L), skip = TRUE )
makeExperimentRegistry( id = "BatchExperimentRegistry", file.dir, sharding = TRUE, work.dir, multiple.result.files = FALSE, seed, packages = character(0L), src.dirs = character(0L), src.files = character(0L), skip = TRUE )
id |
[ |
file.dir |
[ |
sharding |
[ |
work.dir |
[ |
multiple.result.files |
[ |
seed |
[ |
packages |
[ |
src.dirs |
[ |
src.files |
[ |
skip |
[ |
Generates a data.frame
with one row per job id. The columns are: ids of problem and algorithm
(named “prob” and “algo”), one column per parameter of problem or algorithm (named by the parameter name),
the replication number (named “repl”) and all columns defined in the function to collect the values.
Note that you cannot rely on the order of the columns.
If a parameter does not have a setting for a certain job / experiment it is set to NA
.
Have a look at getResultVars
if you want to use something like ddply
on the
results.
The rows are ordered as ids
and named with ids
, so one can easily index them.
reduceResultsExperiments( reg, ids, part = NA_character_, fun, ..., strings.as.factors = FALSE, block.size, impute.val, apply.on.missing = FALSE, progressbar = TRUE )
reduceResultsExperiments( reg, ids, part = NA_character_, fun, ..., strings.as.factors = FALSE, block.size, impute.val, apply.on.missing = FALSE, progressbar = TRUE )
reg |
[ |
ids |
[ |
part |
[ |
fun |
[ |
... |
[any] |
strings.as.factors |
[ |
block.size |
[ |
impute.val |
[ |
apply.on.missing |
[ |
progressbar |
[ |
[data.frame
]. Aggregated results, containing problem and algorithm paramaters and collected values.
Basically the same as reduceResultsExperiments
but creates a few (hopefully short) jobs
to reduce the results in parallel. The function internally calls batchMapQuick
,
does “busy-waiting” till
all jobs are done and cleans all temporary files up.
The rows are ordered as ids
and named with ids
, so one can easily index them.
reduceResultsExperimentsParallel( reg, ids, part = NA_character_, fun, ..., timeout = 604800L, njobs = 20L, strings.as.factors = FALSE, impute.val, apply.on.missing = FALSE, progressbar = TRUE )
reduceResultsExperimentsParallel( reg, ids, part = NA_character_, fun, ..., timeout = 604800L, njobs = 20L, strings.as.factors = FALSE, impute.val, apply.on.missing = FALSE, progressbar = TRUE )
reg |
[ |
ids |
[ |
part |
[ |
fun |
[ |
... |
[any] |
timeout |
[ |
njobs |
[ |
strings.as.factors |
[ |
impute.val |
[ |
apply.on.missing |
[ |
progressbar |
[ |
[data.frame
]. Aggregated results, containing problem and algorithm paramaters and collected values.
THIS DELETES ALL FILES REGARDING THIS ALGORITHM, INCLUDING ALL JOBS AND RESULTS!
removeAlgorithm(reg, id, force = FALSE)
removeAlgorithm(reg, id, force = FALSE)
reg |
[ |
id |
[ |
force |
[ |
Nothing.
Other remove:
removeExperiments()
,
removeProblem()
THIS DELETES ALL FILES REGARDING THE JOBS, INCLUDING RESULTS!
If you really know what you are doing, you may set force
to TRUE
to omit sanity checks on running jobs.
removeExperiments(reg, ids, force = FALSE)
removeExperiments(reg, ids, force = FALSE)
reg |
[ |
ids |
[ |
force |
[ |
Vector of type integer
of removed job ids.
Other remove:
removeAlgorithm()
,
removeProblem()
THIS DELETES ALL FILES REGARDING THIS PROBLEM, INCLUDING ALL JOBS AND RESULTS!
removeProblem(reg, id, force = FALSE)
removeProblem(reg, id, force = FALSE)
reg |
[ |
id |
[ |
force |
[ |
Nothing.
Other remove:
removeAlgorithm()
,
removeExperiments()
A data.frame is returned that contains summary information
about the selected experiments. The data.frame is constructed
by building the columns “prob, <prob.pars>, algo, <algo.pars>, repl”.
Now only the columns in show
will be selected, how many of such experiments
exist will be counted in a new column “.count”.
summarizeExperiments(reg, ids, show = c("prob", "algo"))
summarizeExperiments(reg, ids, show = c("prob", "algo"))
reg |
[ |
ids |
[ |
show |
[ |
[data.frame
].
reg = makeExperimentRegistry("summarizeExperiments", seed = 123, file.dir = tempfile()) p1 = addProblem(reg, "p1", static = 1) a1 = addAlgorithm(reg, id = "a1", fun = function(static, dynamic, alpha, beta) 1) a2 = addAlgorithm(reg, id = "a2", fun = function(static, dynamic, alpha, gamma) 2) ad1 = makeDesign(a1, exhaustive = list(alpha = 1:2, beta = 1:2)) ad2 = makeDesign(a2, exhaustive = list(alpha = 1:2, gamma = 7:8)) addExperiments(reg, algo.designs = list(ad1, ad2), repls = 2) print(summarizeExperiments(reg)) print(summarizeExperiments(reg, show = c("prob", "algo", "alpha", "gamma")))
reg = makeExperimentRegistry("summarizeExperiments", seed = 123, file.dir = tempfile()) p1 = addProblem(reg, "p1", static = 1) a1 = addAlgorithm(reg, id = "a1", fun = function(static, dynamic, alpha, beta) 1) a2 = addAlgorithm(reg, id = "a2", fun = function(static, dynamic, alpha, gamma) 2) ad1 = makeDesign(a1, exhaustive = list(alpha = 1:2, beta = 1:2)) ad2 = makeDesign(a2, exhaustive = list(alpha = 1:2, gamma = 7:8)) addExperiments(reg, algo.designs = list(ad1, ad2), repls = 2) print(summarizeExperiments(reg)) print(summarizeExperiments(reg, show = c("prob", "algo", "alpha", "gamma")))